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Toasting changes both the quantity and the quality of the extractable substances in oak wood of
barrels used for the aging of fine wines and spirits. Mastery and repeatability of toasting are vital
in the production of quality barrels to be used for aging wines and spirits. Toasted wood components,
which can be extracted by the wines or spirits during the aging process, are normally analyzed by
maceration in standard alcohol solutions at concentrations adapted to the various products and
can be used to control the intensity of the wood toasting. These kinds of analyses are accurate but
time-consuming and need specialized laboratories. In this work, the feasibility of monitoring barrel
toasting levels using an electronic nose with a metal oxide odor sensor array (MOS) was studied.
The results of oak toasting level differentiation obtained via the MOS network were identical to
those obtained by analyzing extractable compounds in liquid or gas phase as described in a previous
paper. The results presented in this work at the laboratory scale could be used to implement a
nondestructive monitoring system based on the analysis of headspace of barrels under industrial
conditions.
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INTRODUCTION

The oak barrels used for aging wines and spirits are
heated over a fire to bend the wood into shape. Further
heating then toasts the inside, modifying the structure
and composition of the inner surface of the staves.
Toasting changes both the quantity and quality of the
extractable substances in the oak (Nishimura et al.,
1983; Dubois, 1989; Chatonnet et al., 1989a,b; Puech,
1987; Chatonnet, 1995; Cutzach et al., 1997). Toasting
intensity and duration may be adjusted and adapted to
suit oak of different origins and species, as well as
different types of wine (Chatonnet et al., 1993, 1997).
Mastery and repeatability of toasting are vital in the
production of quality barrels to be usef for aging wines
and spirits.

Toasted wood components that can be extracted by
the wines or spirits during the aging process are
normally analyzed by maceration in standard alcohol
solutions at concentrations adapted to the various
products (10-12% volume for wine, 40-50% volume for
spirits) (Puech, 1987; Chatonnet and Boidron, 1989).
These analyses are accurate but time-consuming. Sev-
eral different methods can be used to determine the
chemical composition of the toasted wood. In a previous
paper, we suggested an alternative method involving
headspace analysis by solid-phase microextraction
(HSSPME). This method requires neither preparation
nor preliminary extraction of toasted wood samples

(Chatonnet et al., 1999). SPME is a very simple method
that can be carried out in any laboratory, although it is
difficult to obtain good quantitative results. There was
no simple, objective technique for assessing oak barrel
quality or toasting levels in the average workshop or
laboratory.

Five countries worked together on a CRAFT/BRITE-
EURAM III European research program to study ap-
plications for odor sensors in the agrifood industry and
hybrid electronic detection systems combining various
technologies. We studied the feasibility of monitoring
barrel toasting levels using an electronic nose with odor
sensors developed by Laboratoire Excell (Merignac,
France). The main components of an electronic nose are
a measurement cell and a data processing unit. This
data processing system applies various mathematical
models, particularly neural networks (Gardner et al.,
1992a,b) and multivariate statistical analysis (Gardner,
1991). It can be trained to recognize a characteristic
profile.

Different types of sensors may be used to detect
volatile substances in the gas phase. Metal oxide sensors
(MOS) (tin oxide, SnO2; zinc oxide, ZnO; and tungsten
oxide, WO3), which may or may not be doped with
precious metals (especially palladium, Pd, and platinum,
Pt), have been used for many years in gas detection and
have provided the basis of many new research develop-
ments (Seiyama, 1978; Windismann, 1979; Oyabu, 1984;
Moseley and Williams, 1987; Oishi et al., 1988; Gardner,
1989; Mosely and Williams, 1991). Their ability to detect
aromas and discriminate among them has been tested
in many fields, particularly in the agrifood industry
(Moy, 1992; Gardner et al., 1992a,b; Moy, 1993; Moy
and Chatonnet, 1993). These metal oxides have varying
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selectivity and sensitivity, depending on their oxidation
properties and the amount of catalytic additive. This
type of sensor is highly sensitive (parts per million to
parts per billion depending on the compounds to be
detected) to a wide range of chemical compounds. These
systems may be used at high temperatures to avoid
pollution, are relatively resistant, have a 2-3-year life
span, and are relatively cheap, but they are sensitive
to humidity.

Surface acoustic waves (SAW) may also be used for
gas detection. Adsorption of a substance on the selective
coating of the detector causes a frequency variation in
an oscillatory circuit. Detection sensitivity is directly
related to oscillation frequency. The frequency normally
available, 200 MHz, does not provide a high level of
sensitivity, whereas a frequency of 433.92 MHz signifi-
cantly reduces detection limits. However, raising the
frequency also significantly increases cost and back-
ground noise and causes a considerable decrease in
sensor stability. SAWs have gradually been replaced by
quartz-crystal microbalances (QCM), using the piezo-
electric effect (Ngeh-Ngwainbi et al., 1990; Guilbaut and
Suleiman, 1990; Suleiman and Guilbaut, 1991). The
sensitive element, a quartz, has a special coating that
matches the stationary phases used for gas-phase
chromatography. When the gas molecules come into
contact with the sensor, they are subjected to an
adsorption/desorption balance. Gas adsorption increases
the mass of the crystal and decreases the oscillation
frequency according to the Saurberey equation (1994).
According to this equation, a quartz crystal oscillating
at a basic frequency of 9 MHz varies by 400 MHz/µg; a
5 mm diameter crystal oscillating at 15 MHz reacts at
2600 Hz/µg. According to these theoretical calculations,
a piezoelectric crystal’s detection limit is ∼10-12 g.
QCMs currently available are not very sensitive to
humidity but still operate at low frequencies (10 MHz),
which does affect their sensitivity.

Polymer conductor-based sensors are not very sensi-
tive to variations in humidity, if at all. This type of
sensor is made by coating a very thin layer of polymer
conductor, obtained by polymerizing heterocyclic mol-
ecules with various counterions (Hodgins, 1995). The
most frequently used monomers are pyrrol, indole,
thiophen, and aniline. Aniline and indole are the most
stable and sensitive to polar molecules. These polymers
change conductivity rapidly and reversibly according to
an adsorption/desorption balance when they come into
contact with the polar molecules in a gas. They are
highly sensitive and extremely stable. However, they
are significantly less durable than metal oxides and
sensitive to poisoning (irreversible adsorption) and,
consequently, their life span is often shorter (6 vs 18
months).

After several preliminary studies, we decided to use
a network of several MOS-type sensors. In this paper,
we present the results of tests to discriminate among
different toasting levels used in cooperage. This method
is intended for quality control and ensuring the repeat-
ability of specific barrel toasting levels.

MATERIALS AND METHODS

Barrel Toasting and Preparation of Wood Samples.
Barrels were toasted over a wood fire according to the method
and temperature criteria outlined by Chatonnet et al. (1989a,b).
The samples of wood toasted to varying degrees were taken
by scraping the inside (0-5 mm) of the barrels made from

European sessile oak (Quercus petraea). Each sample (four for
each toasting level) was homogenized and divided into two
parts. The first part was subjected to standard gas-phase
chromatography to identify the volatile extractable compounds
(after maceration in dilute alcohol solution or direct analysis
in gas phase by HSSPME) (Chatonnet et al., 1999). The second
sample was analyzed by the MOS network.

Analysis of Volatile Compounds by a Network of MOS-
Type Sensors. Operating Principle. When the aroma sensors
of the measurement cell detect a volatile molecule, the electric
signal is modified. In this case, the sensors consisted of thin
layers (50 µm) of tin oxide-based semiconductors, doped with
various precious metals. Tin dioxides (SnO2) are intrinsically
n-type sensors. Oxygen from the atmosphere creates a barrier
to potential by decreasing the electron concentration on the
sensor surface, as shown by

When R volatile compounds are present, the oxygen adsorbed
at the sensor’s surface reacts as follows (II):

The sensor’s resistance drops. The signal curve was digitized
and transferred to the computer. Simultaneous use of 24
sensors reacting to different chemicals makes it possible to
scan all of the components of the toasted wood aroma. Each
sensor presents various answers to the different volatile
compounds in relation with its metallic composition and
especially the presence of rare earths in the metal oxide. The
various sensor responses are combined, and the resulting
profile, processed by multivariate analysis or a neural network,
makes it possible to distinguish among different toasting
levels.

Using an MOS Network To Analyze Headspace. We used a
FOX 4000 system supplied by ALPHA-MOS (Toulouse, France)
with 18 basic SnO2 sensors (6 of which were not doped), of a
total of 54 available sensors. The system was equipped with
an automatic Odorscanner HS50 sampling system. A 0.5 g
sample was placed in a 10 mL flask with a PTFE seal. The
sample was heated to 80 °C for 10 min. After a 20 min
balancing sequence, 2500 µL of headspace was automatically
taken using a gas syringe and injected directly into the gas
flow (N2/O2 80:20, 300 mL/min, constant relative humidity of
20% passing over a CaCl2 solution in a bath maintained at a
temperature of 38 ( 2 °C) passing through the three sensor
chambers maintained at 175 °C at a rate of 1250 µL/s. Signal
acquisition lasted 120 s. The syringe was cleaned by purging
it with synthetic air for 3 min. Before each new injection into
the detector, the syringe was pumped three times in the
headspace to be analyzed. The sensors were purged with
synthetic air at a rate of 500 mL/min. Sampling started only
once the various sensors had returned to the base signal. All
of the sensors had returned to the baseline after 8 min of
purging.

Each of the three connecting sensor chambers has six metal
oxide sensors (P, flat-plate sensor; T, tubular sensor; SY,
nondoped tin oxide), a temperature sensor, and a relative
humidity sensor. Patent laws prevent us from revealing full
details of the various sensors.

Statistical Analysis of Results. Each sample was ana-
lyzed three times. The mean of the results of the three
consecutive tests was calculated using the multivariate sta-
tistical analysis (Unistat) included in the FOX data processing
software. We ran principal component analysis (PCA) and
discriminating factorial analysis (DFA) on the centered data
after 120 s of data acquisition.

RESULTS AND DISCUSSION

Variations in MOS Response. The changes in
resistance R of the sensors compared with the initial
resistance (∆R/R0) ranged from 1% (T70/1 sensor) to

n + 1/2O2 f O (s)- (I)

R(g) + O(s)- f RO(g) + n (II)
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72% (P30/1 sensor). These variations were partly at-
tributable to the sensors themselves but were also due
to the samples analyzed (headspace concentration).

Total Analysis Time. Data were recorded for 600 s,
or 10 min, after 120 s of injection. After 10 min, all of
the sensor readings had returned to the baseline. Total
analysis time included the purge time to return to the
baseline. It may be reduced at least to 8 min by purging
at a higher flow rate, which cleans the sensor surfaces
more quickly (1500 mL/min).

Repeatability of Measurements. Samples of lightly
(L1-3) and heavily (F1-3) toasted wood were analyzed
three times. Figure 1 shows the relatively small differ-
ence among the results of three analyses of the same
sample. Taking the ∆R/R0 values into consideration at
the maximum variation of each sensor, we obtain a
coefficient of variation of 8%.

Discriminating among Wood Toasting Intensi-
ties Using the MOS Network. The responses of the
various MOS recorded for each toasted wood sample and
each repetition were subjected to multidimensional
statistical processing. After a stepwise PCA using the
score values as variables was run, a discriminant
factorial analysis (DFA) optimized the separation of the
various toasting intensities. Figure 2a shows a projec-
tion of the variables in a space defined by the two
principal discriminating axes (DF1/DF2), explaining
100% of the total variance (complete correlation).

The three groups representing different levels of
toasting on oak were quite separate in the space being
examined. Toasted/nontoasted groups were essentially
discriminated on the DF1 axis (94.58% of the variance).
It was clear that lightly toasted wood was quite separate
from the rest. The distinction between medium and

heavily toasted wood, however, plotted on the DF2 axis,
accounted for only 5.08% of the variance. Using the
Mahalanobis statistic, it was more difficult to distin-
guish between medium and heavy toasting than it was
to discriminate between light and medium toasting or
between light and heavy toasting (see Table 1).

Sample R (Figure 2a), considered by the cooper to be
heavily toasted, was not properly classified by the
statistical model, as it falls between medium and heavy
toasting. Sample â, which was analyzed three times,
shows a significant dispersion in the measurements.
The first measurements were probably erroneous as
some sensors had not returned to the baseline.

Selecting the Most Discriminating Sensors. The
sensors were projected onto the previously calculated
discriminating functions to determine which were most
efficient in discriminating among the three toasting
intensities (Figure 2b). Table 2 shows each sensor’s
contribution toward distinguishing among the different
toasting levels in DFA.

Figure 1. Repeatability of the ∆R/R0 response of different
metal oxide sensors [three repeated measurements (1-3) at
two toasting levels (L, light; F, heavy)].

Figure 2. Dicrimination of toasting levels (1, light; 2, medium;
3, heavy) of differents samples of toasted oak wood by factorial
discriminant analysis of the ∆R/R0 responses of metal oxide
sensors: (a) projection of samples; (b) projection of sensors;
(dashed-perimeter circles) repetitions of the analysis of the
same sample (DF1 ) 94.98% of the total variance; DF2 )
5.01%).

Table 1. Mahalanobis Distance Calculated between the
Different Groups of Toasting Levels

groups distance

heavy/medium 2.82
medium/light 9.35
heavy/light 10.28
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We can see that some nondoped, tin oxide-based
sensors (SY/G, SY/CT, SY/CG) are well correlated with
the light toast. The other sensors, doped with precious
metal, were highly influenced by the volatile compounds
emitted by the more heavily toasted wood. The best
light/medium or light/heavy toasting discrimination was
obtained on the DF1 axis with the SY/G, SY/CT, T30/1,
P10/1, P10/2, and SY/GW sensors. Fewer sensors were
able to distinguish between medium and heavy toasting
on the DF2 axis. The most discriminating sensors were
PA3, P30/1, and P30/2. P70/1 and SY/CG sensors were
inefficient. Furthermore, P70/1 had a tendency to be
contaminated because it never returned to the baseline
as quickly as the other sensors. These last two MOS
can thus be eliminated without altering the quality of
group separation.

CONCLUSION

On the basis of results obtained in this laboratory
work, it is possible to envisage using a network of MOS
to monitor the quality and toasting homogeneity of oak
wood used to make barrels for aging wine and spirits.
The results of oak toasting level differentiation obtained
via the MOS network, as described above, were identical
to those obtained by analyzing extractable compounds
in liquid or gas phase as described in a previous paper
(Chatonnet et al., 1999).

It should be possible to implement a nondestructive
monitoring system based on the analysis of headspace
in barrels, under conditions to be defined at a later date.
This will, however, require the development and regular
updating of a toasting database, customized for each
workshop and each toasting level.

Work is currently in progress to examine the technical
feasibility of this type of control method under industrial
conditions.
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Table 2. Capacity of Different MOS Used in a Network
To Distinguish among Three Toasting Levels

MOS
discrimination

powera MOS
discrimination

powera

T70/2 34.80 SY/GW 30.09
P10/1 34.34 P30/2 24.00
T30/1 34.24 SY/W 23.29
PA2 34.04 SY/LG 16.96
SY/G 33.93 TA2 13.69
P40/1 33.89 PA3 10.71
P30/1 33.15 T40/1 10.67
SY/CT 32.38 P70/1 4.28
P10/2 31.32 SY/CG 1.31

a Square of the determination coefficient.

4322 J. Agric. Food Chem., Vol. 47, No. 10, 1999 Chatonnet and Dubourdieu


